GAN系列算法原理及极简代码解析
基本思想
生成对抗网络——原理解释和数学推导
首先有一个“生成器(Generator)”:其实就是一个神经网络,或者是更简单的理解,他就是一个函数(Function)。输入一组向量,经由生成器,产生一组目标矩阵(如果你要生成图片,那么矩阵就是图片的像素集合,具体的输出视你的任务而定)。它的目的就是使得自己造样本的能力尽可能强,强到什么程度呢,强到你判别网络没法判断我是真样本还是假样本。
同时还有一个“判别器(Discriminator)”:判别器的目的就是能判别出来一张图它是来自真实样本集还是假样本集。假如输入的是真样本,网络输出就接近 1,输入的是假样本,网络输出接近 0,那么很完美,达到了